An Introduction to Logic

Propositions

Prolog is founded upon ideas from logic, and the idea of a logical proof. Logic is a formal
system of reasoning about what is true and what is false. The propositional calculus is a
simple system in which propositional variables, such as P and Q stand for whole
sentences which are considered either true or false. So a sentence like “5 is an integer” is
true because of the nature of numbers. A sentence like “a dog is a mammal” is true
because of the definition of what it is to be a mammal, and the nature of dogs. However,
a sentence like “it is raining” can be either true or false depending on the state of the
world when the sentence is uttered.

Logical Connectives

If we let P stand for “it is raining” and Q for “the sky is cloudy”, we can express the fact
that the two sentences are true together using a logical “and”. So the compound sentence
“it is raining and the sky is cloudy” can be written as P A Q using the connective for and.
The idea of “or” can be expressed as well. So the sentence “I am tired or I am hungry”
could be written as P v Q using the connective for “or”. Logical negation turns true into
false and false into true. So the sentence “it is not raining” can be written as —P using the
unary connective for “not”. These three connectives make it possible to form very
complex expressions such as —|(P v Q) A =R which express equally complex compound

sentences.

Truth tables

The exact meaning of the logical connectives are given in truth tables, which express all
the possible combinations of true and false, and the outcome for each connective. The
table for not is simple since it only has tow possibilities. The tables for and and or have
four possibilities each:

b | P
false | true
true | false

The column with the not symbol turns the truth of P upside-down.

P A Q

true | true | true

true | false | false

false | false | true

false | false | false

P Vv Q

true | true | true

true | true | false

false | true | true

false | false | false

Logical Implication

Truth can also be made conditional, i.e. the truth of one sentence can be dependent on
another. Thus the sentence “if it is cloudy then it will rain” can be expressed as an
implication: P = Q. An implication is only false when the left-hand sentence is true and

the right-hand one false. We can express this as a truth table:

P = |Q

true | true | true

true | false | false

false | true | true

false | true | false

Note that an implication is “trivially true” when the left-hand sentence is false.

Logical Proof
There are a set of intuitive rules that derive true results from other true (compound)
propositions. For example, if it known that P A Q is true, the clearly P is true (and also
Q). If Pv Qis true, and P is false, then Q must be true. If ——P is true, then P is true.
The most useful of these rules, and the one that Prolog uses is called modus ponens. If it
is known that P = Qs true and also that P is true, then Q must be true. This rules is very
often written as:
P=0

P

Q
Use of this rule can give rise to proofs where the truth of some proposition is dependent
on a sequence of applications of the rule. For instance, if we know that
P = 0,0 = R, P are all true, then clearly R is true after the application of modus ponens
twice. Put another way, if we want to prove that R is true, we need to know that P is true
first, and that is only because Q is also true. Prolog swaps round the implication, but
essentially follows the same thinking. The same proof would be written in Prolog as:

We can then prove r as a goal by first setting up q as a subgoal, then setting up p as a
further subgoal and finally finding p to be a fact. This can also be done with compound

subgoals. E.g. if PAQ= R,RAS=T,P,Q,S are all true, then clearly 7 is true. In
Prolog form this is:

t :- r,s.
T Psg.

n.,Q'o R

Relations and Predicates

Some sentences can be broken down because they express properties of or relationships
among objects. For instance, the cat is black, says that the object ‘cat’ has a property of
‘black’. John loves Jane is a relationship between John and Jane of ‘loves’. In logic, such
relationships are called predicates and are expressed in a sort of ‘functional’ way:
black(cat) and loves(John,Jane). It is then possible to express generalities using this form.
A statement such as All elephants are gray is not a statement about one particular
elephants, but about the whole set of elephants. Similarly, a statement like Some bears
are white is not a statement about a particular bear, but about the existence of white bears.
These two forms are captured in logic by quantifiers. In order to use a quantifier, we need
a set of objects about which we can make a statement. This needs a variable, and the
quantifiers are said to quantify ‘over’ that variable. The universal quantifier captures the
meaning of all: Vx.elephant(x) says that everything is an elephant. Clearly this is false in

the real world. However, we can make it true by making it conditional:
Vx.hasTrunk(x) = elephant(x) . This says that every thing which has a trunk is an

elephant. It is read as ‘for all x, if hasTrunk(x) is true, then elephant(x) is true. The
existential quantifier expresses the meaning of some: Ix.elephant(x). Clearly this is true

in the real world, since there is at least one things that is an elephant. To restrict the usage
of the quantifier, we often put another property in its scope:
dx.gray(x) A elephant(x) says that there is at least one gray thing that is also an elephant.

The existential forms are often read as “there exists an x such that ...”.
The addition of relations (predicates), variables and quantifiers turns logic propositional
into predicate logic, and it really this that gives rise to Prolog.

Prolog and Predicate Logic

We can express complex proofs, still using modus ponens, in predicate logic. For
instance, if Vx.P(x) = Q(x), P(a)are both true, where a is any object, then clearly O(a)

is also true. The form Vx.P(x) = Q(x)is often read as ‘all Ps are Qs’, and since a has
property P, then it also has property Q. Prolog expresses universal rules like these using
variables:

q(X) = p(X).
which are implicitly universally quantified. When Prolog matches a goal to a rule, it is
instantiating the variable. So in:

g(X) := p(X).

if we have a goal q(Y), then this is true if p(Y) is true, and this is true because Y can be
instantiated to the object a. Prolog therefore proves logical statements by setting them up
as goals, attempting to match the goals to facts or rules, and using the equivalent of
modus ponens to set up subgoals. A more complex program like:

p(XIY) Hia q(X),r(Y)-
g(X) := s,t(X).
r(a).

S.

t(b).

can be used to prove many things. We can prove for instance that q(b) is true by using the
rule for . We can also prove p(b,a) is true by using the rule for p and the rule for q.

Two questions occur: exactly what can Prolog represent?, and what are the limitations of
this? It turns out that Prolog can only represent part of predicate logic. What this means is
that some proofs which are possible in logic cannot be proved using Prolog. However, the
limitations of this are quite minor. Prolog can represent proofs using a wide variety of
forms, and these are perfectly adequate for many purposes. The limitations are given by
the form of a rule. The head of the rule (the left-hand side) can only be a single predicate.
This subset of predicate logic is called Horn clause logic because we can only express
universally quantified expression of the form

Vx,...2.P(x,...2) AQ(x,...2) A+ = R(xX,...2)

There can be any number of variables, and predicates with any number of arguments, and
any number of anded terms on the left of the implication, but there can only be a single
term on the right-hand side. (Existential quantifiers can also be handled, but only using
logical functions, which we will not describe here). The other big limitation is that
negation is not represented. This also means that any statement involving not is difficult
to express. Again, the limitation can be minimized, but it is still there.

Is Prolog really Logic

Well, yes and no. Its form of proof is very close to chaining through universally
quantified implications using modus ponens, but this is not all of logic. The best answer
is to understand its limitations, and work within them to produce working programs. AS a
complete example, consider a ‘family relationship’ program that can prove things about
family members and how they are related.

ancestor (X,Y) :- parent(X,Y).

ancestor (X,Y) :- ancestor(X,Z),ancestor(z,Y).

mother (X,Y) :- parent(X,Y),female(X).

father (X,Y) :- parent(X,Y),male(Y).

sibling(X,Y) :- mother (M,X),mother (M,Y)

sibling(X,Y) :- father (F,X), father(F,Y).

child(X,Y) :- parent(Y,X).

cousin(X,Y) :- parent(Pl,X),parent(P2,Y),sibling(P1l,P2).

parent (john,mary) .
parent (jill,mary) .
parent (bill, john) .
parent (sarah, jake) .
parent (jane, sarah) .
parent (bill, sarah).
male (john) .

male (bill) .

male (jake) .

female (mary) .
female (jill).
female (sarah) .

Using the program above, we can show that cousin(mary,jake) and that
ancestor(bill,mary) among many other things. The goal stack for cousin(mary,jake) is:

cousin(mary,jake)
| X=mary,Y=jake
parent(P1,mary),parent(P2,jake),sibling(P1,P2)
| P1=john
parent(P2,jake),sibling(john,P2)
| P2=sarah
sibling(john,sarah)
| X=john,Y=sarah
mother(M,john),mother(M,sarah)
| X=M,Y=john
parent(M,john),female(M),mother(M,sarah)
| M=bill
female(bill),mother(bill,sarah)
| fail, so backtrack to parent(M,john)
| fail, so backtrack to sibling(john,sarah)
father(F,john),father(F,sarah)
| F=hill
parent(bill,john),male(bill), father(bill,sarah)

|
male(bill),father(bill,sarah)

|
father(bill,sarah)

| X=bill,Y=sarah
parent(bill,sarah), male(bill)

| male(bill)
yes

The goal stack for ancestor(bill,mary) is:

ancestor(bill,mary)

| X = bill,Y=mary
parent(bill,mary)

| fail, so backtrack to ancestor(bill, mary)

| X=bill,Y=mary
ancestor(bill,Z),ancestor(Z,mary)

| X=bil,Y=2Z
parent(bill,Z),ancestor(Z,mary)

| Z=john
ancestor(john,mary)

| X=john,Y=mary
parent(john,mary)

yes

